
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-99-2394
Approved for public release;
distribution is unlimited.

Title:
Optimal Configuration of a Command and Control
Network: Balancing Performance and
Reconfiguration Constraints

Author(s): L. Jonathan Dowell

Submitted to:

http://lib-www.lanl.gov/la-pubs/00796032.pdf

Optimal Configuration of a Command and Control Network:
Balancing Performance and Reconfiguration Constraints

L. Jonathan Dowell
Los Alamos National Laboratory

P. O. Box 1663 MS F604
Los Alamos, NM 87545
ljdowell@lanl.gov

ABSTRACT
The optimization of the configuration of communications and
control networks is important for assuring the reliability and
performance of the networks. This paper presents techniques for
determining the optimal configuration for such a network in the
presence of communication and connectivity constraints.

Keywords
network optimization, spanning tree, data-fusion network, genetic
algorithm

1. INTRODUCTION
Many command and control systems, supervisory control and data
acquisition systems, and data-fusion networks consist of a
spanning tree that connects remote sensors to a central data-
processing facility or command post. Such networks combine
measurements from remote sensors at a single central processing
facility. Examples of such networks include the supervisory
control and data acquisition (SCADA) systems of electric-power
and natural-gas utilities, and some military command and control
systems.
Optimization of such networks is important for assuring the
reliability and performance of the networks. Such networks can be
characterized as graphs of vertices and edges, where the edges are
the communications links between vertices of computer,
communication, data-acquisition, and control devices. The
networks contain a central processing facility, which can be a
command post, control center, or other data-collection facility.
Several types of constraints can be considered in the identification
of an optimal configuration for the network. Such constraints
include minimizing the probability of data loss or corruption from
poor communications edges, reducing the number of edges
between the central command post and the most distant vertices in
the network, and allocating the connectivity between vertices
while reserving connectivity capacity for reconfiguration of the
network in the event of vertex or edge failures.
This paper examines the optimization of spanning-tree
communications networks containing a single central processing
facility. It presents an optimal configuration of a network for the
minimization of the probability of data loss in communications
links. It presents a genetic algorithm method for optimally
embedding a spanning tree in a graph for the selection of a data-

fusion network subgraph. Finally, it explores a technique for
reconfiguration to restore connectivity to a data-fusion network
following the failure of a network component.

2. OPTIMAL CONFIGURATION TO
MINIMIZE DATA LOSS

A communications or control network can be described as a
graph. The edges of this graph route messages from the remote
vertices to a central processing facility (such as a command post),
with relaying through other vertices as necessary. Consider this
infrastructure network to be a strict, connected, undirected graph
G = (V, E) of vertices V and edges E. The command-post vertex is
φ∈ V, and the other vertices {v: v∈ V, v≠φ} are the set of remote
terminals and relaying stations. Associate with each edge e ∈ E a
positive weight l(e) called the length of e. The spanning-tree
subgraph T = (V, ET), ET ⊆ E, is a connected subgraph of G
without cycles. The edges ET consist of the active edges through
which messages are routed from the remote vertices to the
command post. That is, there are a variety of edges connecting the
various vertices of G, but only some of the edges are used in the
data-fusion network. The edges of ET are selected from E to
optimize T by some metric. In a real-world network, the
optimization may be to maximize the signal-to-noise ratio of the
resulting paths, reduce the number of edges between the command
post and the remote terminals in the longest paths, minimize the
probability of data loss, or produce an extreme value for some
other practical metric. The length a1a2 of a path between vertices
a1 and a2 is the sum of the lengths of the edges belonging to the
unique path

21aaP in T between a1 and a2:

∑
∈

==
21

21
)(path oflength 21

aaPe
aa elPaa (1)

The radius r(v) of a vertex v is the distance vφ between v and the
command-post vertex φ. The degree or valency of a vertex is the
number of edges incident with that vertex.
These concepts can be used to optimize the configuration of a
spanning-tree communications network to minimize the
probability of data loss in the network’s communications. Let ρ(e)
be the independent probability of successfully transmitting a
message through edge e. Then the probability Ρr (v) of
successfully transmitting a message from vertex v to the command
post φ is the product of the probabilities of successful
transmission of each of the edges in the path P between v and φ:

∏
∈

=
Pe

evPr)()(ρ (2)

LANL LA-UR 99-2394

ACM Symposium on Applied Computing
Villa Olmo, Como, Italy 19-21 Mar 2000

Paper ID #CS-03
accepted for publication 1 Nov 1999

Then

()








−=
























=

∑

∏

∈

∈

Pe
e

Pe

evPr

)(
1lnexp

)(lnexp)(

ρ

ρ

(3)

Note that Ρr(v) is maximized when ()∑
∈ Pe

e)(
1ln ρ is minimized.

Then the optimal configuration of this spanning-tree
communications network is a shortest-path tree subgraph where
the length function l(e) is the natural logarithm of the reciprocal of
ρ(e), ())(

1ln)(eel ρ= . The shortest-path tree subgraph can be found

with Dijkstra’s famous algorithm [1,2].

3. OPTIMAL CONFIGURATION WITH
CONNECTIVITY CONSTRAINTS

The method described in section 2 supposes that any edge e ∈ E
that exists can be employed in the fabrication of the spanning-tree
communications networks. However, there may be practical
constraints to the connectivity that is permitted in the realization
of this network. For instance, there may be an upper bound to the
degree for each vertex, there may be a maximum number of
vertices permitted in any branch of the tree, the graph G may be
incomplete, or other similar constraints may exist.

Figure 1 illustrates two extreme examples of possible
configurations of a communications network. Figure 1a shows a
star graph. In this graph, every vertex is connected directly to the
command post. The number of vertices in each branch is
minimized, but the degree of the command-post vertex is
maximized. Figure 1b shows a chain graph. The degree of the
command post and of the other vertices in the graph is minimized,
but the number of vertices in the branch is maximized.
Suppose the graph G is complete, the edge length is the same for
all edges (that is, l(e)=l ∀ e∈ E), and there is an upper bound k for
the degree for each vertex in the spanning tree subgraph T. Let us

define optimality for a communications-network subgraph as the
subgraph that minimizes the sum of the radii of each vertex over
all vertices v∈ E. Then the optimal communications-network
subgraph is a fractal graph as shown in Fig. 2. Proof: This can be
shown to be true by induction. As illustrated in Fig. 2, the fractal
graph sorts the vertices V into layers as measured by the number
of edges between a vertex vi∈ layer i and φ. As the length l(e) is
uniform for all edges, the radius of a vertex in layer i is (i-1)⋅l. For
the first vertex v≠φ, the only possible location is in layer 2, with
one edge between this first vertex and the command post φ. The
location of minimal radius for the first k vertices is in layer 2.
Then the degree of the command post has attained its maximum
value, and subsequent vertices must be placed in higher-order
layers. For subsequent vertices, say, the jth vertex, the location of
minimum radius is in the last unfilled layer of order z, where

j≤∑
=

−−
z

kk
2

2)1(
α

α and z is the smallest integer satisfying this

relation. Because the graph is complete, the edges required to
make this location assignment (placing the jth vertex in the zth

layer) are always available. As the radius of each vertex is
minimized at the time of its assignment, the sum of the radii over
all vertices is minimized, QED. Note that this optimal fractal
graph is produced by a breadth-first search constrained by the
maximum degree for each node.

If the graph G is not complete, then the edges necessary for the
placement of the vertices in this optimal fractal arrangement may
not be available. The fractal network structure is still optimal if
the necessary edges are available. However, if there are vertices
with degree smaller than the communication-network connectivity
upper bound k, then these vertices present an inherent limit to the
optimality of the realized network. The objective becomes to
place such vertices in a layer with the highest possible order,
which will minimize the consequence to the optimality of the
network.

Figure 1. Connectivity constraints produce different spanning-tree
communication networks. Figure 1a shows a star graph, minimizing
the distance of each vertex from the command post φ, but demanding
a maximum degree for the command-post vertex. Figure 1b shows a
chain graph, minimizing the degree of each vertex but maximizing
the distances of vertices from the command post.

Figure 2. A fractal tree graph results from limiting the degree of the
vertices in the graph while minimizing the sum of the distances of
the vertices from the command post φ. Such a fractal graph is a
subgraph of a complete graph, but may not be possible as a subgraph
of incomplete but practical communication-network graphs.

The problem of ordering the vertices to place those of deficient
degree into a high-order layer is NP-complete. A method for a
solution of this problem is a genetic algorithm. Genetic algorithms
have been used recently to obtain efficient, practical solutions to a
number of NP-complete graph problems [4,5,9]. Figures 3, 4, and
5 present an example of optimally embedding a degree-
constrained communication-network subgraph in a graph of
communications links.

Figure 3 represents a communications network showing 25 remote
terminals and relay stations deployed across terrain with hills and
other obstacles that limit communications between the vertices.
The central processing facility is a command post at node 13. The
goal of this example is to select a communication-network tree
subgraph subject to a constraint that the maximum degree for any
vertex is 3, and with the objective of minimizing the number of
edges between each vertex and the command post. A genetic
algorithm is used to search the space of subgraphs, selecting a
subgraph with 24 edges. With 46 edges in the communications
network, there are over 7.89×1012 possible 24-edged subgraphs.
A chromosomal encoding scheme is necessary for the genetic
algorithm. For this problem, the chromosomal encoding of the
subgraph information is a record of the single adjacent vertex
associated with each vertex of the graph. That is, when a spanning
tree is found there will be a single path vφ between ver t ex v
and the co mmand po st φ, for each v∈ V. Then a sufficient
chromosomal encoding records the unique vertex v′ that is
adjacent to v in this path. The genetic algorithm begins with a
randomized population of 200 individual 24-edged subgraphs,
where each adjacent vertex v′ is selected at random from the
vertices adjacent to v. The command-post vertex is omitted from
this chromosome, as there will be no path needed to connect it to
itself in the communication-network tree subgraph. Note that
these initial individual chromosomes may not be complete trees,
and may contain detached loops. An obvious fitness function for
the genetic algorithm is the optimization metric for the tree
subgraph, which is the sum of the layer numbers of each of the
vertices in the tree. (The objective is to minimize the layer number

for each vertex, minimizing the radius of each vertex, as was
described previously in this section.) Note that the maximum
possible layer number for a vertex connected to the command post
by a 24-edged tree is 25. Any detached vertices are assigned a
value of 100. Then the fitness function produces a value between
the minimum of 49 (for an unconstrained 24-edged tree
containing 24 vertices in layer 2) and the maximum of 2401 (for a
subgraph with 24 vertices detached from the command post).
With the constraint of a maximum degree of 3 for any vertex, the
fitness function attains a minimum value of 88 for the optimal
fractal subgraph having 25 vertices.
Genetic recombination creates a chromosome for a new individual
by selecting an adjacent vertex v′ for each vertex v∈ V. This
selection is made randomly for each vertex from the two
chromosomes of the two parent individuals selected from the
population. For each new chromosome, two parent chromosomes
are selected by weighting the individuals in the population by the
values of their fitness functions. Because the fitness function is a
value to be minimized, individuals with lower fitness functions
are more suitable and are favored in the selection of parents. For
this experiment, a parent was selected by using the cube of the
reciprocal of its fitness value as a weight. Once two parents were
selected, then the new chromosome was developed by randomly
selecting the adjacent vertex v′ for each vertex v from one of the
two parents. For this experiment, the first parent’s gene was used
40% of the time, the second parent’s gene was used 40% of the
time, and 20% of the time mutation was introduced by randomly
selecting an adjacent vertex v′ from the adjacency list of vertex v.
The constraint of a maximum degree of 3 for every vertex was
imposed by discarding any new chromosomes that violated this
constraint. Selection continued in each iteration until 200 new
viable chromosomes were produced.

Figure 4 illustrates the success of this genetic-algorithm
experiment. An optimal fractal subgraph cannot be embedded in
the graph in this example, but a nearly optimal fitness value of 93

Figure 3. An example of a 25-vertex communication network.
Communication links are limited by hills (represented by the large
circles) and other obstacles, limiting this graph to 46 edges. The
command post vertex φ is shown at vertex 13.

10

100

1000

0 50 100 150 200

Iteration Number

N
et

w
or

k
Va

lu
e

Figure 4. Selection of a spanning-tree subgraph for a data-fusion
network with maximum degree of 3 is accomplished by a genetic
algorithm (GA). The GA combines chromosomes of 24-edged
subgraphs to find an optimal spanning tree of minimum total vertex
radii. After 7 iterations (examining 1400 individuals), the GA
produces a subgraph of value 98, and after 20 iterations produces a
subgraph of value 93. An optimal fractal subgraph of 25 vertices has
a value of 88.

was obtained after 20 iteration of genetic recombination
(representing examination of only 4000 individuals from the
24-edged subgraph sample space). A nearly optimal fitness value
of 98 was attained after 7 iterations, representing examination of
1400 individual chromosomes. In 200 iterations, six distinct
subgraphs with fitness value of 93 were identified. Figure 5 shows
an example of an optimal spanning-tree subgraph having fitness
value of 93. The chromosome for this subgraph is:

Node 1 2 3 4 5 6 7 8 9 10
Adjacent 2 3 7 7 4 8 13 12 8 12

Node 11 12 13 14 15 16 17 18 19 20
Adjacent 10 13 0 13 14 14 16 17 15 15

Node 21 22 23 24 25
Adjacent 3 21 21 23 22

4. RECONFIGURATION
Present problems in assuring infrastructure security include
optimizing the restoration of the infrastructure following the
failure of one or more network elements. Let us consider failures
of elements of a data-fusion network that cannot be repaired and
that will require reconfiguration. Reconfiguration of two detached
components consists of adding a new edge with one endpoint in
each component so that communication between the command
post and the disconnected component is restored. The set of edges
ET

c = {e ∈ E, e ∉ ET} is the complement of ET and is the set of
redundant or unused edges available for reconfiguration of the
network following a failure of a vertex or edge of the tree. A
failure of an edge e ∈ ET will partition the tree into two detached
components. An edge failure will require the addition of one new
edge to reconnect the two detached components. A failure of a
vertex will remove the vertex from the graph and will cause
failures of the edges terminating at the failed vertex. If the vertex
is a leaf, then the remaining graph will have a single component,
and no reconfiguration will be required. If the vertex is not a leaf,
then the failure will partition the graph into λ components, where
λ is the degree of the failed vertex. Then λ–1 edges must be added

to the graph to reconfigure these components. Because the
operation of the network depends on operation of the command-
post vertex, a failure of the command post cannot be reconfigured.
Figure 6 illustrates reconfiguration following an edge failure.

Reconfiguration of two detached components requires the
addition of a new edge having an endpoint in each component. Let
this edge eab have endpoint vertex a in the component containing
the command post and endpoint vertex b in the detached
component. Then the maximum radius of all vertices in the
detached component following reconfiguration is
r(d) = r (a)+l(eab)+bd, where d is the vertex in the detached
component that is farthest from b. If there are n vertices in the
detached component, then the distance bd can be determined in
O(n) by traversing the detached component. If there are m edges
having one endpoint in the component containing the command
post and the other endpoint in the detached component, then the
optimal reconfiguration that will reduce the maximum radius r(d)
can be determined in O(mn).
The computation time for optimal reconfiguration of a detached
component can be improved by applying results developed by
Handler. In [3], Handler presented several important results
related to the vertex one center [6,7] of a tree. First, Handler
describes an O(n) algorithm for identifying the absolute one
center and vertex one center of a tree. Second, Handler showed
that a vertex one center is an element of every longest path p(L(v))
between a vertex v and the leaf L(v) of greatest distance from v.
Third, Handler described the diameter of T of which the vertex
one center must be an element. Note that Handler’s results reveal
that a tree has a maximal branch relative to the vertex one center.
This maximal branch contains c, the leaf farthest from the vertex
one center. The tree also has a secondary, submaximal branch
containing leaf c′, the leaf of a distinct branch that is the second
farthest from the vertex one center. Furthermore, the distance cc′
is the diameter of T.
The vertex one center of the detached component, the distance
R(v) of every vertex v in the detached component from the vertex
one center, and the membership of a vertex v in the maximal

Figure 5. An example of a spanning-tree subgraph with maximum
degree of 3 and total value of 93.

Figure 6. An example of reconfiguration of a data-fusion network
following the failure of an edge of T. The cross indicates the failed
edge. A new edge e is added such that one endpoint of e is in each of
the two detached components of T. Endpoint a is in the component
containing the command-post vertex φ, and endpoint b is in the
component disconnected by the edge failure.

branch containing c can be found in O(n). Then the maximum
distance vL(v) for every vertex v can be determined subsequently
in O(1).





∉+
∈′+

=
cvcRvR
cvcRvR

vvL
 containingbranch),()(
 containingbranch),()(

)(. (4)

Optimal reconfiguration is to find a new edge ab such that

bdelardr ab ++=)()()((5)
is minimized. Applying Handler’s results,





∉+
∈′+

=
cbcRbR
cbcRbR

bd
 containingbranch),()(
 containingbranch),()(

. (6)

Then optimal reconfiguration can be determined in O(m+n),
which is more efficient for most m and n.
This implementation of Handler’s algorithm for the purpose of
reconfiguration following a network disconnection suggests an
optimization metric for the selection of the communication-
network tree subgraph, by selecting the tree so that edges between
the branches (relative to the central processing facility) are left
available for reconfiguration. Of course, this leads to a system of
multiple objectives, with some objectives optimizing
communication and reliability of the initial communication-
network tree, and other objectives optimizing unused edges to be
available for restoration. Conflicts between these objectives are
likely to produce compromises between performance and
reconfigurabilty, may be resolved through multi-objective genetic
algorithms [8], and present a topic for further research in this area.

5. ACKNOWLEDGMENTS
Los Alamos National Laboratory (LANL) supported this work
through the ELISIMS project and through work for the Joint
Program Office for Biological Defense of the United States
Department of Defense. The University of California operates
LANL for the United States Department of Energy under contract
W-7405-ENG-36. LANL strongly supports academic freedom and
a researcher’s right to publish; therefore, LANL as an institution
does not endorse the viewpoint of a publication or guarantee its
technical correctness.

6. REFERENCES
[1] E. W. Dijkstra, A Note on Two Problems in Connexion

with Graphs, Numerische Mathematik 1 (1959) 269-271.

[2] E. Minieka, Optimization algorithms for networks and
graphs. M. Dekker, New York, 1978.

[3] G. Y. Handler, Minimax Location of a Facility in an
Undirected Tree Graph, Transportation Science 7 (1973)
287–293.

[4] B. A. Julstrom, Coding TSP Tours as Permutations via an
Insertion Heuristic. Proceedings of the 1999 ACM
Symposium on Applied Computing (San Antonio TX, Feb.-
Mar. 1999), ACM, 297-301.

[5] K. Katayama and H. Narihisa, A New Iterated Local Search
Algorithm using Genetic Crossover for the Traveling
Salesman Problem. Proceedings of the 1999 ACM
Symposium on Applied Computing (San Antonio TX, Feb.-
Mar. 1999), ACM, 302-306.

[6] B. C. Tansel, R. L. Francis, and T. J. Lowe, Location on
Networks: A Survey. Part I. The p-Center and p-Median
Problems, Management Science 29 (1983) 482–497.

[7] B. C. Tansel, R. L. Francis, and T. J. Lowe, Location on
Networks: A Survey. Part II. Exploiting Tree Network
Structure, Management Science 29 (1983) 498–511.

[8] D. A. Van Veldhuizen and G. B. Lamont, Multiobjective
Evolutionary Algorithm Test Suites. Proceedings of the
1999 ACM Symposium on Applied Computing (San
Antonio TX, Feb.-Mar. 1999), ACM, 351-357.

[9] D. Whitley, T. Starkweather, and D. Shaner, The Traveling
Salesman and Sequence Scheduling: Quality Solutions
Using Genetic Edge Recombination. In L. Davis, ed.,
Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York, 1991.

7. ABOUT THE AUTHOR
Dr. L. Jonathan Dowell is a Technical Staff Member in the
Energy and Environmental Analysis Group at LANL. Dr. Dowell
received his Ph.D. in engineering physics from the University of
Virginia in 1989. Dr. Dowell has performed research and analysis
in the fields of metrology, power-systems engineering, computer
science, and applied mathematics. Dr. Dowell also is president of
ReefNews, Inc., a non-profit organization that produces
educational materials about the oceans.

	Optimal Configuration of a Command and Control Network: Balancing Performance and Reconfiguration Constraints
	ABSTRACT
	1. INTRODUCTION
	2. OPTIMAL CONFIGURATION TO MINIMIZE DATA LOSS
	3. OPTIMAL CONFIGURATION WITH CONNECTIVITY CONSTRAINTS
	4. RECONFIGURATION
	5. ACKNOWLEDGMENTS
	6. REFERENCES
	7. ABOUT THE AUTHOR

